

Tacrolimus Time in Therapeutic Range after Hematopoietic Stem Cell Transplant

Jessica Sieg, PharmD; Frank Oley Jr., PharmD, MBA, BCOP; Christina Luszcak, PharmD, BCOP; Koen W van Besien, MD, PhD; UH Cleveland Medical Center, Cleveland, USA

Introduction

- Tacrolimus is used with other immunosuppressive agents to prevent graft versus host disease (GVHD) in patients receiving allogeneic hematopoietic stem cell transplant (HSCT).
- Tacrolimus trough levels are monitored due to its narrow therapeutic index:
 Subtherapeutic levels increase the risk of developing GVHD
- Supratherapeutic levels increase the risk of toxicity (acute kidney injury [AKI] and posterior reversible encephalopathy syndrome [PRES])
- The optimal tacrolimus therapeutic range after allogeneic HSCT is not well defined in literature.

Objectives

- 1º Objective: GVHD incidence within 6 months following HSCT
- 2º Objectives: time to GVHD, average tacrolimus levels, time within specified tacrolimus trough level ranges as defined below:
- Tacrolimus goal 8-13 ng/mL months 1-3
- Tacrolimus goal 5-8 ng/mL months 4-6
- Safety Objectives: incidence of AKI, PRES, all-cause mortality, tacrolimus discontinuation within 6 months

Methods

• Single-center, retrospective chart review conducted April 2018 to April 2023

Inclusion Criteria	Exclusion Criteria
Age 18-89 years old	 Syngeneic HSCT
 HSCT patients receiving tacrolimus 	 CD34 selected graft
for GVHD prevention	 Prior allogeneic HSCT

Results

Table 1. Demographics	GVHD , n=121	No GVHD, n=37	P-value
Age in years, mean (SD)	53.8 (13.8)	59.6 (13.4)	0.025
Male Sex, no. (%)	73 (60.3)	23 (62.2)	0.842
Diagnosis, no. (%)			0.404
AML	58 (47.9)	19 (51.4)	
MDS	30 (24.8)	6 (16.2)	
Other*	33 (27.3)	12 (32.4)	
Donor, no. (%)			0.401
Matched Unrelated	43 (35.5)	15 (40.5)	
Matched Related	26 (21.5)	7 (18.9)	
Other**	52 (43)	15 (40.5)	
Immunosuppression, no. (%)			0.077
Cy/Tacrolimus/MMF	46 (38)	21 (56.8)	
Tacrolimus/MTX	50 (41.3)	13 (35.1)	
Tacrolimus/MMF	25 (20.7)	3 (8.1)	

Table 2. GVHD Characteristics	GVHD n=121
Time to GVHD in days from HSCT, median (IQR)	37 (23-57)
Type of GVHD, no. (%) Skin Upper Gastrointestinal Other***	79 (65.3) 72 (59.5) 64 (52.9)

Results

Months 4-6

Patients without GVHD, n=37

Figure 1. Mean Tacrolimus Time in Therapeutic Range (TTTR)
6 Months Following HSCT, N=158

Therapeutic Range: 5-8 ng/mL
P-value 0.001

Therapeutic Range: 8-13 ng/mL
P-value 0.015

47

47.6%

44.2%

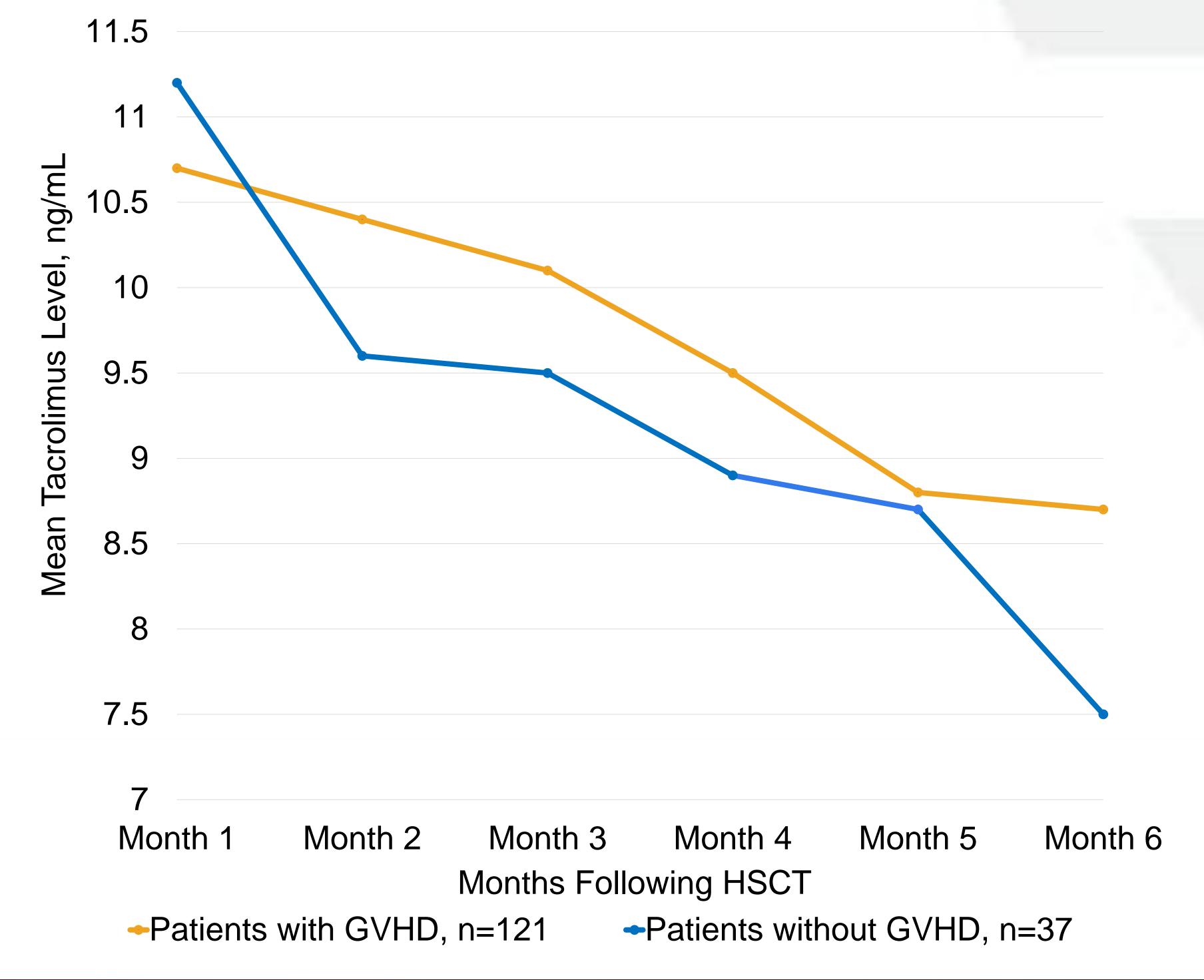

44.2%

Figure 2. Mean Tacrolimus Levels 6 Months Following HSCT, N=158

Months Following HSCT

Months 1-3

Patients with GVHD, n=121

Results

Table 3. Safety Outcomes, no. (%)	GVHD, n=121	No GVHD, n=37
AKI Months 1-6 Months 1-3	116 (95.9) 110 (90.9)	35 (94.6) 35 (94.6)
Months 4-6 PRES Months 1-6 Months 1-3 Months 4-6	90 (74.4) 2 (1.7) 2 (1.7) 0	21 (56.8) 2 (5.4) 2 (5.4) 0
Mortality Months 1-6 Months 1-3 Months 4-6	19 (15.7) 5 (4.1) 14 (11.6)	8 (21.6) 6 (16.2) 2 (5.4)
Tacrolimus Discontinuation Months 1-6 Months 1-3 Months 4-6	16 (13.2) 11 (9.1) 5 (4.1)	6 (16.2) 3 (8.1) 3 (8.1)

13.6%

31.7%

22.7%

4.6%

4.6%

4.6%

4.6%

TMA/concern for TMA

■ PRES

No GVHD

Persistent GVHD

AKI

Per Provider

Relapse

Discussion

- GVHD occurred in 77% of patients primarily in months 1-2 following HSCT with an overall mean TTTR of 45% in months 1-6 following HSCT
- Patients without GVHD had a significantly higher mean TTTR overall & numerically higher mean tacrolimus level in month 1 followed by lower mean tacrolimus levels thereafter compared to those with GVHD
- Safety outcomes were similar between groups

13.6%

Conclusions

 Increasing TTTR targeting higher levels earlier such as 8-13 ng/mL in months 1-3, particularly in month 1, and then lower levels later such as 5-8 ng/mL in months 4-6, following HSCT can help to decrease the incidence of GVHD

Disclosure & References

Authors of this presentation have no personal or financial interests to disclose.

- 1. Bolaños-Meade J, et al. Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. N Engl J Med. 2023 Jun 22;388(25):2338-2348.
- 2. Yao JM, et al. Tacrolimus initial steady state level in post-transplant cyclophosphamide-based GvHD prophylaxis regimens. Bone Marrow Transplant. 2022 Feb;57(2):232-242.
- 3. Soskind R, et al. Initial tacrolimus weight-based dosing strategy in allogeneic hematopoietic stem-cell transplantation. J Oncol Pharm Pract. 2021 Sep;27(6):1447-1453.